
THE GOOD, BAD AND UGLY
ABOUT POINTERS

Problem Solving with Computers-I

▪ ar is like a pointer to the first element
▪ ar[0] is the same as *ar
▪ ar[2] is the same as *(ar+2)

ar

 100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

The good: Pointers pass data around efficiently
Pointers and arrays

Pointer Arithmetic
int arr[]={50, 60, 70};

int *p;

p = arr;

p = p + 1;

*p = *p + 1;

Pointer Arithmetic
▪What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

The bad? Using pointers needs work!

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;

 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR

➢allocate room in memory for something new that it will point to

The ugly: memory errors!
9

“The overwhelming majority of program bugs and computer crashes
stem from problems of memory access... Such memory-related
problems are also notoriously difficult to debug. Yet the role that
memory plays in C and C++ programming is a subject often
overlooked…. Most professional programmers learn about memory
entirely through experience of the trouble it causes.”
 …. Frantisek Franek
 (Memory as a programming concept)

Pointer pitfalls and memory errors
• Segmentation faults: Program crashes because it

attempted to access a memory location that either
doesn’t exist or doesn’t have permission to access

• Examples
• Out of bound array access
• Dereferencing a pointer that does not point to

anything results in undefined behavior.

int arr[] = {50, 60, 70};

for(int i=0; i<=3; i++){
cout<<arr[i]<<endl;

}

int x = 10;
int* p;
cout<<*p<<endl;

Pointer Arithmetic Question

How many of the following are invalid?
I. pointer + integer (ptr+1)
II. integer + pointer (1+ptr)
III. pointer + pointer (ptr + ptr)
IV. pointer – integer (ptr – 1)
V. integer – pointer (1 – ptr)
VI. pointer – pointer (ptr – ptr)
VII. compare pointer to pointer (ptr == ptr)
VIII. compare pointer to integer (1 == ptr)
IX. compare pointer to 0 (ptr == 0)
X. compare pointer to NULL (ptr == NULL)

#invalid
 A: 1
 B: 2
 C: 3
 D: 4
 E: 5

III, V, VIII are the problems

C++ MEMORY MODEL,
DYNAMIC MEMORY MANAGEMENT

Problem Solving with Computers-I

General model of memory
• Sequence of adjacent cells

• Each cell has 1-byte stored in it

• Each cell has an address
 (memory location)

 0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

Memory address Value stored

C++ Memory Model

C++ data/variables: the not so obvious facts

The not so obvious facts about data/variables in C++ are that there are:
• two scopes: local and global
• three different regions of memory: global data, heap, stack
• four variable types: local variable, global variables, dynamically

allocated variables, and function parameters

Variable: scope: Local vs global
 1 #include <iostream>
 2 using namespace std;
 3
 4 int B;
 5
 6 int* foo(){
 7 int A;
 8 A = 15;
 9 return &A;
 10 }
 11 int bar(){
 12
 13 B = 20;
 14 return B;
 15
 16 }

Which of the functions on the left has a
memory related bug?
A. foo()
B. bar()
C. Both
D. Neither

Lawton Nichols

Dynamically managed memory: Heap
 1 #include <iostream>
 2 using namespace std;
 3
 4 int* createAnInt(){
 5
 6
 8
 9
 10 }

Write a function to create an integer in memory
- Need to create the object on heap memory
- To create an object on the heap use the new keyword

Heap vs. stack
 1 #include <iostream>
 2 using namespace std;
 3
 4 int* createAnIntArray(int len){
 5
 6 int arr[len];
 7 return arr;
 8
 9 }

Does the code correctly create an array of integers?
A. Yes
B. No

Lawton Nichols

Dynamic memory management
• To allocate memory on the heap use the ‘new’ operator
• To free the memory use delete

int *p= new int;
delete p;

Dangling pointers and memory leaks

• Dangling pointer: Pointer points to a memory location that no longer exists

• Memory leaks (tardy free):
• Heap memory not deallocated before the end of program
• Heap memory that can no longer be accessed

Dynamic memory pitfalls

• Does calling foo() result in a memory leak? A. Yes B. No

void foo(){
 int * p = new int;

}

Q: Which of the following functions returns a dangling pointer?

int* f1(int num){
 int *mem1 =new int[num];
 return(mem1);
}

A. f1
B. f2
C. Both

int* f2(int num){
int mem2[num];
return(mem2);

}

These are the student records:
ID# 1, Shmoe, Joe, Major: EE, Average GPA: 3.60
ID# 2, Chen, Macy, Major: CS, Average GPA: 3.95
ID# 3, Peter, Patrick, Major: ME, Average GPA: 2.77

Expected output

Homework 7, problem 4
void printRecords(UndergradStudents records [], int numRecords);
int main(){

 UndergradStudents ug[3];
 ug[0] = {"Joe", "Shmoe", "EE", {3.8, 3.3, 3.4, 3.9} };
 ug[1] = {"Macy", "Chen", "CS", {3.9, 3.9, 4.0, 4.0} };
 ug[2] = {"Peter", "Patrick", "ME", {3.8, 3.0, 2.4, 1.9} };
 printRecords(ug, 3);  

}

