L
Dynamic memory management

* To allocate memory on the heap use the ‘new’ operator
* To free the memory use delete

int *p= new int;

delete p;

Dangling pointers and memory leaks

* Dangling pointer: Pointer points to a memory location that no longer exists
- Memory leaks (tardy free):

* Heap memory not deallocated before the end of program
* Heap memory that can no longer be accessed

Dynamic memory pitfalls

* Does calling foo() result in a memory leak? s B. No

void foo()A{
int x p = new 1nt;

Lawton Nichols

(): Which of the following functions returns a dangling pointer?

int* fl(int num){
int *meml =new int[num];
return(meml) ;

int* f£2(int num){
int mem2[num];
return(mem2) ;

A. f1l

@. ¥2

C. Both

Lawton Nichols

L
Homework 7, problem 4

void printRecords(UndergradStudents records [], int numRecords);
int main(){
UndergradStudents ug[3];

uglo] = {"Joe", "Shmoe", "EE", {3.8, 3.3, 3.4, 3.9} };
ugl1] = {"Macy", "Chen", "CS", {3.9, 3.9, 4.0, 4.0} };
ugl[2] = {"Peter", "Patrick", "ME", {3.8, 3.0, 2.4, 1.9} };

printRecords(ug, 3);
s

Expected output

These are the student records:

ID# 1, Shmoe, Joe, Major: EE, Average GPA: 3.60
ID# 2, Chen, Macy, Major: CS, Average GPA: 3.95
ID# 3, Peter, Patrick, Major. ME, Average GPA: 2.77

DYNAMIC MEMORY ALLOCATION
LINKED LISTS

Problem Solving with Computers-| ++
(:: GitHub

m

L 2 Yig vl
oMt o L% 1
fe.:‘"{

Different ways of organizing data!

15 20 30

Array List Link list list spanning tree

|1 =
‘) ‘]
| 4 ¢

Treo sraph Stack Hashing

Y 4

h
N
\ b
\ \
\ \
‘ ‘\ \
- ’
//
l/ '/
/ e
' >
"y

| l‘[l |
-
.‘__

g

N

Linked Lists Array List

The Drawing Of List {1, 2, 3}

Stack Heap

head | , U The overall list is built by connecting the
nodes together by their next pointers. The

nodes are all allocated in the heap. Linked List

C/;- CD—=CD

A “head” pointer local to Each node Each node stores The next field of
BuildOneTwoThree() keeps stores one one next pointer. the last node 1s
the whole list by storing a data element NULL.

pointer to the first node. (int in this

example).

Accessing elements of a list

struct Node {

=

int data;
Node *next;

3

/)

Assume the linked list has already been created, what do the following
expressions evaluate to?

1.

2.
3.
4

nead->data (é\
nead->next->data
nead->next->next->data(__
head->next->next->next->data E

A. 1

B. 2

C.3

D. NULL

E. Run time error

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

. °
Creating a small list struct Node {

int data;

* Define an empty list
Pty Node *next;

- Add a node to the list with data = 10

Inserting a node in a linked list

Void insertToHeadOfList(LinkedList* h, int value) ;

terating through the list

int lengthOfList(LinkedList x list) {
/* Find the number of elements in the list x/

list

ead tail

1 \\ENC:::}H'CZ > E*ZD

Deleting the list

int freeLinkedList(LinkedList * list) {
/* Free all the memory that was created on the heapx/

list

ead tail

) \C}Cz G

