
Dynamic memory management
• To allocate memory on the heap use the ‘new’ operator
• To free the memory use delete

int *p= new int;
delete p;

Dangling pointers and memory leaks

• Dangling pointer: Pointer points to a memory location that no longer exists

• Memory leaks (tardy free):
• Heap memory not deallocated before the end of program
• Heap memory that can no longer be accessed

Dynamic memory pitfalls

• Does calling foo() result in a memory leak? A. Yes B. No

void foo(){
 int * p = new int;

}

Lawton Nichols

Q: Which of the following functions returns a dangling pointer?

int* f1(int num){
 int *mem1 =new int[num];
 return(mem1);
}

A. f1
B. f2
C. Both

int* f2(int num){
int mem2[num];
return(mem2);

}

Lawton Nichols

These are the student records:
ID# 1, Shmoe, Joe, Major: EE, Average GPA: 3.60
ID# 2, Chen, Macy, Major: CS, Average GPA: 3.95
ID# 3, Peter, Patrick, Major: ME, Average GPA: 2.77

Expected output

Homework 7, problem 4
void printRecords(UndergradStudents records [], int numRecords);
int main(){

 UndergradStudents ug[3];
 ug[0] = {"Joe", "Shmoe", "EE", {3.8, 3.3, 3.4, 3.9} };
 ug[1] = {"Macy", "Chen", "CS", {3.9, 3.9, 4.0, 4.0} };
 ug[2] = {"Peter", "Patrick", "ME", {3.8, 3.0, 2.4, 1.9} };
 printRecords(ug, 3);  

}

DYNAMIC MEMORY ALLOCATION 
LINKED LISTS

Problem Solving with Computers-I

Different ways of organizing data!

Array List

15 20 30

Linked Lists
7

Linked List

Array List 1 2 3

Accessing elements of a list

 Assume the linked list has already been created, what do the following
expressions evaluate to?
1. head->data
2. head->next->data
3. head->next->next->data
4. head->next->next->next->data

A. 1
B. 2
C. 3
D. NULL
E. Run time error

head

struct Node {
 int data;
 Node *next;  
};

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

Creating a small list
9

• Define an empty list
• Add a node to the list with data = 10

struct Node {
 int data;
 Node *next;  
};

Inserting a node in a linked list
Void insertToHeadOfList(LinkedList* h, int value) ;

Iterating through the list
int lengthOfList(LinkedList * list) {
 /* Find the number of elements in the list */

}

head tail

list

Deleting the list
int freeLinkedList(LinkedList * list) {
 /* Free all the memory that was created on the heap*/

}

head tail

list

