Proble
n Solvin
pu ers-l|
G“Hu

3 s’,u.m,:
N "-1;

ne opil
-p\l'r-'.'. Hois A~
1
J.\8

pLnc Jue o
-snd c\m-.,sf. ach

Why learn pointers?

MAN, | 5UCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

0x3A28213A
Ox6339292C,
Ox7363632E.

L
Pass by value: What is printed by this code?

void swapValue(int x, int y){ A
int tmp = X;
X =Y 30 40
y = s 30 40
}
int main() {
int a=30, b=40; B.
cout<<a<<" "<<b<<end!; 30 40
40 30

swapValue(a, b);

cout<<a<<" "<<p<<endI;
! C. Something else

Pointers

- Pointer: A variable that contains the address of another variable

- Declaration: f#ype * pointer name;

int* p; //Justlike all uninitialized variables this will have a
junk value

int* p = 0; //Declare and initialize

How to make a pointer point to something

int *p; 100 112

int y =3; = v

To access the location of a variable, use the
address operator ‘&’

Pointer Diagrams:
Diagrams that show the relationship between pointers and pointees

points to
100 P b 4 112

Pointer: p 112 3 Pointee: y

You can change the value of a variable using a pointer !

int *p, y;
y = 3;
P = &y;
*p=5,

Use dereference * operator to left of pointer name

e
Tracing code involving pointers

int *p;
int x=10;
p = &Xj

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A. B.

< | 10 x |11

S J

P

C. Neither, the code is incorrect

- s
Two ways of changing the value of a variable

P —

vy| 3

Change the value of y directly:

Change the value of y indirectly (via pointer p):

Pointer assignment and pointer arithmetic: Trace the code

int x=10, y=20;
int *pl = &x, *p2 =&y;

int **p3;

p3 &pP2;

Pointer assignment

int *pl, *p2, X;
pl = &x;
p2 = pl;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

N /\

Pl €—

C. Neither, the code is incorrect

Lawton Nichols
p1

Lawton Nichols
p2

Lawton Nichols
p1

Lawton Nichols
p2

Swap values revisited: Pass by address

void swapValue(int x, int y){
int tmp = X;
X = V;
y = tmp;

I3

int main() {
int a=30, b=40,
swapValue(a, b);

cout<<a<<" "<<b<<endl;

Swap values revisited: Pass by address
void swapValue(int# x, int® vy){

int tmp =¢x; ololes
X =Ry} = Swap Yoo valer € NATE
y YT Mo x &y A PIS T

(Th Hais Ccooe o, b)
<

int main() A
int a=30, b=40;
SwapVaIue(Za,&b); // qus \:\\c aéémqg (SJD &}-b

cout<<a<<" "<<b<<endl;

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

Arrays and pointers

100 104 108 112 116
20 | 30 50 |80 |90

ar

ar 1s like a pointer to the first element
= ar[0] i1sthe same as *ar

o ar[2] 1sthe same as * (ar+2)

= Use pointers to pass arrays in functions
» Use pointer arithmetic to access arrays more conveniently

Pointer Arithmetic
int arr[]={50, 60, 70};

int *p;
p = arr;
p=p+ 1;

void IncrementPtr(int *p){

ptt;
}
int arr[3] = {50, 60, 70}; ql
int *q = arr;
IncrementPtr ;
(q) 50 | 60 | 70
arx

Which of the following 1s true after IncrementPtr (q) is called
in the above code:

A. ‘g’ points to the next element in the array with value 60

B. ‘g’ points to the first element in the array with value 50

How should we implement IncrementPtr () ,so that ‘q’ points to 60
when the following code executes?

volid IncrementPtr(int **p){

ptt;
}
int arr[3] = {50, 60, 70}; q
int *q = arr; 1
IncrementPtr (&q);
A p= p+1; 50 60 70
B. &p = &p + 1; arrc
C. *p= *p + 1;
D. p= &p+l;

Two important facts about Pointers

1) A pointer can only point to one type —(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;
ptr doesn’t actually point to anything yet.

We can either:
>make 1t point to something that already exists, OR

> allocate room 1n memory for something new that it will point to
> Null check before dereferencing

L
Pointer Arithmetic

= What if we have an array of large structs (objects)?

= C++ takes care of 1t: In reality, ptr+1 doesn’t add 1 to the
memory address, but rather adds the size of the array
element.

= C++ knows the size of the thing a pointer points to — every
addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an 1nt, etc.

Pointer pitfalls

- Dereferencing a pointer that does not point to anything results in undefined
behavior.

- On most occasions your program will crash

- Segmentation faults: Program crashes because code tried to access memory
location that either doesn’t exist or you don’t have access to

Why learn pointers?...to get CS jokes

MAN, | 5UCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

0x3A28213A
Ox6339292C,
Ox7363632E.

