
POINTERS 
Problem Solving with Computers-I

Why learn pointers?

void swapValue(int x, int y){
 int tmp = x;
 x = y;
 y = tmp;
}
int main() {

 int a=30, b=40;

 cout<<a<<" "<<b<<endl;

 swapValue(a, b);

 cout<<a<<" "<<b<<endl;

}

Pass by value: What is printed by this code?
A.

30 40

30 40

B.

30 40

40 30

C. Something else

• Pointer: A variable that contains the address of another variable

• Declaration: type * pointer_name;

5

int* p; // Just like all uninitialized variables this will have a
junk value

Pointers

int* p = 0; //Declare and initialize

6

int *p;

int y =3; p y

100 112

How to make a pointer point to something

To access the location of a variable, use the
address operator ‘&’

7

p
112

y
3

100 112

Pointer Diagrams:
Diagrams that show the relationship between pointers and pointees

Pointer: p Pointee: y

p points to y

You can change the value of a variable using a pointer !

Use dereference * operator to left of pointer name

8

int *p, y;

y = 3;

p = &y;

*p = 5;

Tracing code involving pointers

Q: Which of the following pointer diagrams best represents the outcome of the above code?

9

int *p;
int x=10;
p = &x;
*p = *p + 1;

A.
 10x

B.
x

C. Neither, the code is incorrect

 11

p p

p
y 3

10

Change the value of y directly:

Change the value of y indirectly (via pointer p):

Two ways of changing the value of a variable

Pointer assignment and pointer arithmetic: Trace the code

11

int x=10, y=20;

int *p1 = &x, *p2 =&y;

p2 = p1;

int **p3;

p3 = &p2;

Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

12

int *p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x
B.

x

C. Neither, the code is incorrect

Lawton Nichols
p1

Lawton Nichols
p2

Lawton Nichols
p1

Lawton Nichols
p2

Swap values revisited: Pass by address
void swapValue(int x, int y){
 int tmp = x;
 x = y;
 y = tmp;
}
int main() {

 int a=30, b=40;

 swapValue(a, b);

 cout<<a<<" "<<b<<endl;

}

Swap values revisited: Pass by address
void swapValue(int x, int y){
 int tmp = x;
 x = y;
 y = tmp;
}
int main() {

 int a=30, b=40;

 swapValue(a, b);

 cout<<a<<" "<<b<<endl;

}

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

Lawton Nichols

▪ ar is like a pointer to the first element
▪ ar[0] is the same as *ar
▪ ar[2] is the same as *(ar+2)

ar

 100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

Arrays and pointers

Pointer Arithmetic
int arr[]={50, 60, 70};
int *p;
p = arr;
p = p + 1;
*p = *p + 1;

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int *p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int **p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

Two important facts about Pointers
18

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;

 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR

➢allocate room in memory for something new that it will point to

➢Null check before dereferencing

Pointer Arithmetic
▪What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

Pointer pitfalls
• Dereferencing a pointer that does not point to anything results in undefined

behavior.
• On most occasions your program will crash
• Segmentation faults: Program crashes because code tried to access memory

location that either doesn’t exist or you don’t have access to

Why learn pointers?…to get CS jokes

